Nutrient Cycling in Rivers

Weston Nowlin

Aquatic Station
Department of Biology
Texas State University

Nutrients in Rivers Perspectives

Between each of his excursions through the biota, [Molecule] X lay in the soil and was carried by the rains, inch by inch, downhill... X rode down the spring freshet, losing more altitude each hour than heretofore in a century. He ended up in the silt of a backwater bayou, where he fed a crayfish, a coon, and then an Indian, who laid him down to his last sleep in a mound on the riverbank. One spring an oxbow caved the bank, and after one short week of freshet X lay again in his ancient prison, the sea.

- Aldo Leopold (1949), "Odyssey" in A Sand County Almanac

Nutrients in Rivers Perspectives

It has been said that streams are the gutters down which flow the ruins of continents.

– Luna B. Leopold et al. (1964), Fluvial Processes in

Geomorphology

River Ecosystems

Recipients of Materials

Transport of Materials

Transport and Transformation

Outline for Today's Talk

- Landscape controls of river nutrient concentrations
 - Brazos River

- Metabolism and organic carbon processing by bacteria in a river network
 - Rio Grande drainage

Physiography Climate Geology Topography Stream Order Stream Density

Research Questions

- What effect do land-use and physiographic gradients have on nutrient concentrations across a large river network?
- What are the individual and combined influences of these factors on river nutrient dynamics?

Brazos River, TX

Brazos River, TX

~41,000 km² 6 sub-basins 33 sites

Methods

- Water collected over 3 seasons (2008 – 2009)
- Environmental parameters
- Nutrients
 - Total and dissolved N and P
 - Particulates (NVSS, C, N, P)
 - POC and DOC
 - Chl a
- GIS

LULC Scales Used

Local buffer (100m buffer, 2km upstream)

Catchment

Data Analysis

- Used a multivariate analytical framework
- Redundancy Analysis (RDA)
 - Relationships between <u>LULC</u> and <u>Physiographic</u>
 predictors and in-stream nutrient concentrations
 - Can express gradients across the watersheds as combinations of variables
- Variance Partitioning
 - Evaluate the independent and combined effects of the two predictor sets on nutrient concentrations
 - LULC versus Physiographic

Predictor Variables

Land Use/Land Cover

- Urban
- Cultivated Agriculture
- Rangeland
- Forest
- Open Water
- Wetlands

• Physiographic variables

- Longitude [Rainfall]
- Catchment Area
- Stream Density
- Ecoregion (Level-III)
- Mean Slope
- Max Slope

LULC Predictors

Becker et al. 2014. Freshwater Science.

Physiographic Predictors

Adjusted $R^2 = 0.39$

Becker et al. 2014. Freshwater Science.

Variance Partitioning

Scientist

Academic Scientist

Relevance for Resource Managers?

- Physiography (geology, landscape setting, climate) set the "baseline" for nutrients
 - LULC was also important, but to a lesser extent
- Especially relevant for large drainages that cross environmental gradients
 - Multiple ecoregions
- Setting water quality criteria?
 - Ecoregion or drainage-based vs state-wide
 - Implications for identification of <u>reference</u> <u>systems</u>

Major Gradients in Texas

Annual Precipitation

Annual Temperature

- Physiography (geology, landscape setting, climate) set the "baseline" for nutrients
 - LULC was also important, but to a lesser extent
- Especially relevant for large drainages that cross large environmental gradients
 - Multiple ecoregions
- Setting water quality criteria?
 - State-wide vs Ecoregion or drainage-based
 - Implications for identification of <u>reference</u> <u>systems</u>

Outline for Today's Talk

- Landscape controls of river nutrient concentrations
 - Brazos River

- Metabolism and organic carbon processing by bacteria in a river network
 - Rio Grande drainage

Inland Waters as "Reactive Pipes" in a Landscape

Inland Waters as "Reactive Pipes" in a Landscape

Inland Waters as "Reactive Pipes" in a Landscape

Inland Waters and Global Carbon Cycling

Rivers and Global Carbon Cycling

Bacteria and Organic Carbon

- All OC is not the same
 - Labile vs refractory

 Series of pools varying in decomposition rates

 Autochthonous more labile than allochthonous

Questions to Consider

 How does bacterial metabolism respond to environmental gradients in a complex riverine network?

 What is the relative importance of physicochemical factors (e.g., inorganic nutrients) versus factors related to C quantity/quantity in determining bacterial C metabolism?

Lower Rio Grande/Rio Bravo del Norte

- Biogeoclimatic gradient
 - NW to SE
- Highly impacted
 - Hydrology
 - Reservoirs
- Large scale gradient in physicochemical conditions

- 14 sites sampled
- Before, during, and after agricultural growing season (2010)
- Nutrient and water quality data
- BP and BR
 - ³H-leucine BP and 2-d BOD incubations
- DOC, Abs₄₄₀, OC lability

Organic Carbon Lability

- Long-term BOD incubations
- First-order decomposition kinetics
- $BOD_t = BOD_{ult}(1-e^{-kt})$
- <1 μm water
- Day 2, 4, 8, 16, 20
- BOD_{ult} O₂ converted to C by multiplying by 0.3
- Solve for concentration of OC_L and k

Data Analysis

- Physicochemical
 - Temp, DO, salinity
 - $-Q_9$
 - TN, TP, SRP, NH₄⁺, NO₃²⁻
- C Quality and Quantity
 - DOC, OC_L
 - Abs₄₄₀
 - POM
 - Bacterial C:N:P

Site Groups

Bacteria Density and Algal Biomass

Bacteria Production and Respiration

Bacteria Growth Efficiency and OC_L

Bacteria Metabolism Responses

- Substantial spatial variation in responses
- Constructed RDA models to explore the influence of these factors on biological responses (BP, BR, BGE, Chl *a*, Bact Dens)
- Two groups of factors
 - Physicochemical factors
 - C quality and quantity
- Variance partitioning

Physicochemical Predictors

Physicochemical Predictors

Physicochemical Predictors

C Quantity and Quality Predictors

C Quantity and Quality Predictors

C Quantity and Quality Predictors

Relative Importance of Predictors?

- Physicochemical predictors
 - -13.9%
- C Quantity and Quality predictors
 -17.2%
- Approximately equal amount of variation in bacterial responses explained

Conclusions

- Spatial variation in water quality and biological responses
- Substantial variation in bacterial metabolism
 - Productivity and density increased with DOC,
 OC_L, inorganic nutrients
 - Respiration increases with water color and suspended materials
- Management of bacteria in the basin associated with both inorganic N and P and the amount and quality of DOC

Overall Conclusions

- Rivers are integrated parts of landscapes
- Receive materials, transport materials, and transform materials
- Landscape setting is important
- Biological functions also dependent upon landscape position

Acknowledgements

